3.1924 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^2} \, dx\)

Optimal. Leaf size=187 \[ \frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac{3}{4} \left (a-\frac{c d^2}{e^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}+\frac{3 \left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{5/2}} \]

[Out]

(3*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/4 + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^
(3/2)/(2*e*(d + e*x)) + (3*(c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sq
rt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*Sqrt[c]*Sqrt[d]*e^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.126264, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.081, Rules used = {664, 621, 206} \[ \frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac{3}{4} \left (a-\frac{c d^2}{e^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}+\frac{3 \left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

(3*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/4 + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^
(3/2)/(2*e*(d + e*x)) + (3*(c*d^2 - a*e^2)^2*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sq
rt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*Sqrt[c]*Sqrt[d]*e^(5/2))

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^2} \, dx &=\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 e (d+e x)}-\frac{\left (3 \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx}{4 e^2}\\ &=\frac{3}{4} \left (a-\frac{c d^2}{e^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac{\left (3 \left (c d^2-a e^2\right )^2\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e^2}\\ &=\frac{3}{4} \left (a-\frac{c d^2}{e^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac{\left (3 \left (c d^2-a e^2\right )^2\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e^2}\\ &=\frac{3}{4} \left (a-\frac{c d^2}{e^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 e (d+e x)}+\frac{3 \left (c d^2-a e^2\right )^2 \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 \sqrt{c} \sqrt{d} e^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.379775, size = 209, normalized size = 1.12 \[ \frac{\sqrt{e} (c d)^{3/2} (d+e x) \left (5 a^2 e^3+a c d e (7 e x-3 d)+c^2 d^2 x (2 e x-3 d)\right )+3 \sqrt{c} \sqrt{d} \left (c d^2-a e^2\right )^{5/2} \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{4 e^{5/2} (c d)^{3/2} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^2,x]

[Out]

((c*d)^(3/2)*Sqrt[e]*(d + e*x)*(5*a^2*e^3 + c^2*d^2*x*(-3*d + 2*e*x) + a*c*d*e*(-3*d + 7*e*x)) + 3*Sqrt[c]*Sqr
t[d]*(c*d^2 - a*e^2)^(5/2)*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sq
rt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(4*(c*d)^(3/2)*e^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)
])

________________________________________________________________________________________

Maple [B]  time = 0.049, size = 757, normalized size = 4.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x)

[Out]

2/e^2/(a*e^2-c*d^2)/(d/e+x)^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(5/2)-2/e*d*c/(a*e^2-c*d^2)*(c*d*e*(d/e+
x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-3/2*e*d*c/(a*e^2-c*d^2)*a*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-3/
4*e^2/(a*e^2-c*d^2)*a^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+3/8*e^4/(a*e^2-c*d^2)*a^3*ln((1/2*a*e^2-
1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-9/8*e^2*d^
2*c/(a*e^2-c*d^2)*a^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e
+x))^(1/2))/(d*e*c)^(1/2)+9/8*d^4*c^2/(a*e^2-c*d^2)*a*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*
d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+3/2/e*d^3*c^2/(a*e^2-c*d^2)*(c*d*e*(d/e+x)^2+(a*e^2-
c*d^2)*(d/e+x))^(1/2)*x+3/4/e^2*d^4*c^2/(a*e^2-c*d^2)*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-3/8/e^2*d^
6*c^3/(a*e^2-c*d^2)*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x
))^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.70366, size = 895, normalized size = 4.79 \begin{align*} \left [\frac{3 \,{\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) + 4 \,{\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + 5 \, a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{16 \, c d e^{3}}, -\frac{3 \,{\left (c^{2} d^{4} - 2 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \,{\left (2 \, c^{2} d^{2} e^{2} x - 3 \, c^{2} d^{3} e + 5 \, a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{8 \, c d e^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm="fricas")

[Out]

[1/16*(3*(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2
*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e +
a*c*d*e^3)*x) + 4*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(
c*d*e^3), -1/8*(3*(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
+ a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*
x)) - 2*(2*c^2*d^2*e^2*x - 3*c^2*d^3*e + 5*a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c*d*e^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^2,x, algorithm="giac")

[Out]

Timed out